图像傅里叶变换的频率怎么理解?【转载】

文章目录

1 问题

请问图像的傅里叶变换里面,怎么理解高频和低频呢?是u,v大的值对应高频么?傅里叶变换以后得到的幅度谱为什么能反映灰度的变化情况呢?看了很多资料,一直缺乏直观上的理解啊,哪位大神能给讲一下?谢谢!
F ( u , v ) = 1 N ∑ x = 0 N − 1 ∑ y = 0 N − 1 f ( x , y ) e x p [ − j 2 π ( u x + v y ) / N ] F(u,v)=\frac{1}{N}\sum^{N-1}_{x=0}\sum^{N-1}_{y=0}f(x,y)exp[-j2\pi (ux+vy)/N] F(u,v)=N1x=0N1y=0N1f(xy)exp[j2π(ux+vy)/N]

2 解答

图像不过是个二维数组,方便理解起见,咱们可以考虑一维数组。下面的例子可能不严谨,但绝对很直观.

比如有如下数组{1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10}{1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1,}

你直观的理解下,哪个数组的"频率"大点?

你可以用纵坐标代表数组值,横坐标代表数组index描点看看,显然是第一个数组的频率高。所以对于数组来说,数字之间变化剧烈,代表高频,柔和代表低频。

同理,对于图像来说,那就是灰度变化快的是高频,慢的是低频.比如一个物体的边缘,就是高频信号,物体内部,就是低频。而傅立叶变换无非是告诉你这副图像上XXX频率的信号有多少多少,YYY的频率有多少多少.那换句话说就是,图像的傅立叶变换可以让你直观的看到这幅图总体上"剧烈"的变化有多少,"柔和"的变化有多少。

  • 一副整体很模糊的图,傅立叶变换后显示的低频分量就很多
  • 一副整体灰度变化很剧烈的图,傅立叶变换后显示的高频分量就很多
    同理,如果你在频域上将高频分量去掉,再反变换回去,那图片就会变的模糊。

以上内容来自于:

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页