判断点是否在给定四边形内的算法

注意:凹凸多边形的定义

凸多边形:每个内角都是锐角或钝角,也就是没有大于180°的优角的多边形。
凹多边形:至少有一个优角的多边形。

凸多边形就是把一个多边形任意一边向两方无限延长成为一条直线,如果多边形的其他各边均在此直线的同旁,那么这个多边形就叫做凸多边形,也可以理解为通过凸多边形的任意一条边作平面,并与此多边形所在的平面相异,那么凸多边形的其他所有部分都在所作平面的同一侧。
凹多边形就是把一个各边不自交的多边形任意一边向两方无限延长成为一直线,如果多边形的所有边中只要有一条边向两方无限延长成为一直线时,其他各边不在此直线的同旁,那么这个多边形就叫做凹多边形。

方法一:

如果一个点在这个凸四边形内,那么按照顺时针方向,该点一定在每条边的右侧。可使用矢量叉积来看:该方法只适用于凸多边形。

矢量叉积

  计算矢量叉积是与直线和线段相关算法的核心部分。设矢量P = ( x1, y1 ),Q = ( x2, y2 ),则矢量叉积定义为由(0,0)、p1、p2和p1+p2所组成的平行四边形的带符号的面积,即:P × Q = x1*y2 - x2*y1,其结果是一个标量。显然有性质 P × Q = - ( Q × P ) 和 P × ( - Q ) = - ( P × Q )。一般在不加说明的情况下,本文下述算法中所有的点都看作矢量,两点的加减法就是矢量相加减,而点的乘法则看作矢量叉积。

  叉积的一个非常重要性质是可以通过它的符号判断两矢量相互之间的顺逆时针关系:

  若 P × Q > 0 , 则P在Q的顺时针方向。

  若 P × Q < 0 , 则P在Q的逆时针方向。

  若 P × Q = 0 , 则P与Q共线,但可能同向也可能反向。

      所以,假设该凸四边形为ABCD,且ABCD顺时针,待判断的点为M,则需要满足:

      AB × AM>0

      BC × BM>0

      CD × CM>0

      DA × DM>0

      即可证明点M在凸四边形内部。

方法二:

       假设该凸四边形为ABCD,待判断的点为M,过点M任做一条射线L(起点为M,终点无穷远)。如果M在凸四边形内部,则直线L必与四边形相交,且有一个交点。如果M不在凸四边形内部,则L可与四边形相交也可能不相交,相交的情况有两种,一个交点(过四边形的顶点),或者两个交点。如下:

       过点M任做一条射线L,判断交点个数,奇数个则M点在内部,反之在外部。这个适用于多边形以及凹多边形。

方法三:

       如果M在ABCD内部,则ABCD任意一点和M所构成的向量在改点所在边的中间,即叉积的乘积<0。如下:

       AB × AM  * AM × AD<0

       BC × BM  * BM × BA<0

       CD × CM * CM × CB<0

       DA × DM * DM × DC<0

方法四:

      点M若在ABCD内部,则M与ABCD任意二点构成的三角形面积之和等于ABCD的面积,否则大于ABCD的面积。

      计算AMB、BMC、CMD、DMA的面积和,并与ABCD的面积相比较。

转载自:http://hi.baidu.com/quchenyuan/item/1c50a70306152f3ef3eafc8f

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页